usethis::use_course("posit-conf-2023/programming-r-exercises")
๐ & Functions 1
This is a two-day, hands-on workshop for those who have embraced the tidyverse and want to improve their R programming skills and, especially, reduce the amount of duplication in their code.
R for Data Science (2e) Wickham, รetinkaya-Rundel, and Grolemund (2023)
The tidyverse style guide Wickham (n.d.)
Programming with dplyr vignette Wickham et al. (2022)
To each other! With help from Yorkshire!
Ingredients: Sugar, Glucose syrup, Cocoa mass, Vegetable fats (Palm, Rapeseed, Sunflower, Coconut,Mango kernel/ Sal/ Shea), Sweetened condensed skimmed milk (Skimmed milk, Sugar), Cocoa butter, Dried whole milk, Glucose-fructose syrup, Coconut, Lactose and proteins from whey (from Milk), Whey powder (from Milk), Hazelnuts, Skimmed milk powder, Butter (from Milk), Emulsifiers (Sunflower lecithin, E471), Flavourings, Butterfat (from Milk), Fat-reduced cocoa powder, Salt, Lactic acid.
Ingredients: Sugar, Semi-Sweet Chocolate (Sugar, Chocolate, Cocoa Butter, Milkfat, Soy and Sunflower Lecithin, Natural Vanilla Flavor), Glucose Syrup, Peppermint Oil, Citric Acid, Invertase.
Ingredients: Glucose Syrup, Sugar, Starch, Acid: Citric Acid, Flavouring, Fruit and Plant Concentrates: Aronia, Blackcurrant, Elderberry, Grape, Lemon, Orange, Safflower Spirulina, Caramelised Sugar Syrup, Glazing Agents: Beeswax, Carnauba Wax, Elderberry Extract.
Code of Conduct and COVID policies. Please Review
Reporting:
conf@posit.com
the Steph, Mouna and Garrett
colleagues, friends and learners at Schneider Electric, University of York and RForwards!
Posit team and especially Mine รetinkaya-Rundel
You need a laptop with the following installed:
๐ฌ Detailed instructions for installing these were covered in Prerequisites
Time | Activity |
---|---|
09:00 - 10:30 | Functions 1 Introduction, vector and dataframe functions, embracing |
10:30 - 11:00 | โ Coffee break |
11:00 - 12:30 | Functions 2 Plot functions, style and side effects |
12:30 - 13:30 | ๐ฑ ๐ฅ ๐ฎ ๐ด Lunch break |
13:30 - 15:00 | Iteration 1 Introduction and modifying multiple columns |
15:00 - 15:30 | โ Coffee break |
15:30 - 17:00 | Iteration 2 Reading and writing multiple files |
stickies
๐ฆ Iโm all good, Iโm done
๐ช I could do with some help
Discord
no stupid questions
๐ฌ Action!
At the end of this section you will be able to:
https://github.com/posit-conf-2023/programming-r-exercises
๐ฌ Create a Project:
usethis::use_course("posit-conf-2023/programming-r-exercises")
> usethis::use_course("posit-conf-2023/programming-r-exercises")
โ Downloading from 'https://github.com/posit-conf-2023/programming-r-exercises/zipball/HEAD'
Downloaded: 0.26 MB
โ Download stored in 'C:/Users/er13/OneDrive - University of York/Desktop/Desktop/posit-conf-2023-programming-r-exercises-978baff.zip'
โ Unpacking ZIP file into 'posit-conf-2023-programming-r-exercises-978baff/' (45 files extracted)
Shall we delete the ZIP file ('posit-conf-2023-programming-r-exercises-978baff.zip')?
1: Not now
2: Yeah
3: Nope
๐ฌ Choose the option that means yes!
โ Deleting 'posit-conf-2023-programming-r-exercises-978baff.zip'
โ Opening project in RStudio
RStudio will restart
.R
usethis::use_r("functions-01")
๐ฌ Load packages:
โโ Attaching core tidyverse packages โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ tidyverse 2.0.0 โโ
โ dplyr 1.1.2 โ readr 2.1.4
โ forcats 1.0.0 โ stringr 1.5.0
โ ggplot2 3.4.2 โ tibble 3.2.1
โ lubridate 1.9.2 โ tidyr 1.3.0
โ purrr 1.0.1 โโ Conflicts โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ tidyverse_conflicts() โโ
โ dplyr::filter() masks stats::filter()
โ dplyr::lag() masks stats::lag()
โน Use the conflicted package to force all conflicts to become errors'
penguins
๐ฌ Load penguins
data set
Rows: 344
Columns: 8
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adelโฆ
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerseโฆ
$ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, โฆ
$ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, โฆ
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186โฆ
$ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, โฆ
$ sex <fct> male, female, female, NA, female, male, female, maleโฆ
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007โฆ
We have several measurements:
bill_length_mm
bill_depth_mm
flipper_length_mm
body_mass_g
These are on very different scales
difficult to plot on same axis or determine what value is large for that variable
A common solution is to apply a \(z\) score transformation to each variable.
Normalises the values to have a mean of 0 and a standard deviation of 1
\[z = \frac{x - \bar{x}}{s.d.}\]
We can apply the same transformation to each variable:
penguins <- penguins |>
mutate(
z_bill_length_mm = (bill_length_mm - mean(bill_length_mm, na.rm = TRUE)) / sd(bill_length_mm, na.rm = TRUE),
z_bill_depth_mm = (bill_depth_mm - mean(bill_depth_mm, na.rm = TRUE)) / sd(bill_depth_mm, na.rm = TRUE),
z_flipper_length_mm = (flipper_length_mm - mean(flipper_length_mm, na.rm = TRUE)) / sd(flipper_length_mm, na.rm = TRUE),
z_body_mass_g = (body_mass_g - mean(body_mass_g, na.rm = TRUE)) / sd(body_mass_g, na.rm = TRUE)
)
(bill_length_mm - mean(bill_length_mm, na.rm = TRUE)) / sd(bill_length_mm, na.rm = TRUE)
How to shorten and make more clear?
How to make fewer mistakes?
Writing a function:
๐๏ธ You may think you have to write complex functions - you donโt! Start with the simple things.
We will cover two types of function
We will cover two types of function
vector functions: one of more vectors as input, one vector as output
data frame functions: df as input and df as output
mutate()
To turn your code into a function you need:
Use a verb - The tidyverse style guide (Wickham, n.d.) but good advice regardless
Difficulty in naming? Should this be two or three functions?
What should we call the function we write to do a \(z\) score transformation?
the input vector
additional arguments
Naming conventions
\[z = \frac{x - \bar{x}}{s.d.}\]
penguins <- penguins |>
mutate(
z_bill_length_mm = (bill_length_mm - mean(bill_length_mm, na.rm = TRUE)) / sd(bill_length_mm, na.rm = TRUE),
z_bill_depth_mm = (bill_depth_mm - mean(bill_depth_mm, na.rm = TRUE)) / sd(bill_depth_mm, na.rm = TRUE),
z_flipper_length_mm = (flipper_length_mm - mean(flipper_length_mm, na.rm = TRUE)) / sd(flipper_length_mm, na.rm = TRUE),
z_body_mass_g = (body_mass_g - mean(body_mass_g, na.rm = TRUE)) / sd(body_mass_g, na.rm = TRUE)
)
Identify the arguments: the things that vary across calls
(bill_length_mm - mean(bill_length_mm, na.rm = TRUE)) / sd(bill_length_mm, na.rm = TRUE)
(bill_depth_mm - mean(bill_depth_mm, na.rm = TRUE)) / sd(bill_depth_mm, na.rm = TRUE)
(flipper_length_mm - mean(flipper_length_mm, na.rm = TRUE)) / sd(flipper_length_mm, na.rm = TRUE)
(body_mass_g - mean(body_mass_g, na.rm = TRUE)) / sd(body_mass_g, na.rm = TRUE)
Put into the template
Rewrite the call to mutate()
as:
penguins <- penguins |>
mutate(
z_bill_length_mm = to_z(bill_length_mm),
z_bill_depth_mm = to_z(bill_depth_mm),
z_flipper_length_mm = to_z(flipper_length_mm),
z_body_mass_g = to_z(body_mass_g)
)
Much shorter, much more clear.
mean()
has a trim
argument: mean(x, trim = 0, na.rm = FALSE, ...)
the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is computed.
Suppose we want to specify the middle proportion left rather than the proportion trimmed from each end [^1]
A value of 0.1 for trim
trims 0.1 from each end leaving 0.8 in the middle
trim = (1 - middle)/2
to_z(penguins$bill_length_mm, middle = 0.2)
[1] -0.92838057 -0.85511491 -0.70858359 NA -1.36797452 -0.89174774
[7] -0.96501340 -0.91006415 -1.84420131 -0.39720454 -1.16649396 -1.16649396
[13] -0.56205227 -1.01996264 -1.75261923 -1.38629094 -1.00164623 -0.30562246
[19] -1.78925206 0.33545205 -1.16649396 -1.18481038 -1.51450584 -1.09322830
[25] -0.98332981 -1.62440433 -0.65363435 -0.67195076 -1.14817755 -0.67195076
[31] -0.85511491 -1.27639245 -0.85511491 -0.59868510 -1.42292377 -0.91006415
[37] -0.98332981 -0.36057171 -1.20312679 -0.80016566 -1.40460735 -0.61700152
[43] -1.49618943 -0.01255983 -1.31302528 -0.83679849 -0.56205227 -1.22144320
[49] -1.49618943 -0.34225529 -0.83679849 -0.74521642 -1.67935358 -0.39720454
[55] -1.77093565 -0.50710303 -0.94669698 -0.65363435 -1.40460735 -1.20312679
[61] -1.55113867 -0.52541944 -1.20312679 -0.56205227 -1.42292377 -0.47047020
[67] -1.58777150 -0.56205227 -1.51450584 -0.43383737 -1.95409980 -0.81848208
[73] -0.83679849 0.29881922 -1.58777150 -0.25067322 -0.59868510 -1.27639245
[79] -1.45955660 -0.37888812 -1.75261923 -0.23235681 -1.36797452 -1.66103716
[85] -1.25807603 -0.52541944 -1.44124018 -1.33134169 -1.07491189 -0.96501340
[91] -1.55113867 -0.56205227 -1.86251772 -0.83679849 -1.45955660 -0.61700152
[97] -1.11154472 -0.70858359 -2.02736546 -0.17740756 -1.67935358 -0.58036869
[103] -1.18481038 -1.16649396 -1.14817755 -0.81848208 -1.01996264 -1.09322830
[109] -1.11154472 -0.17740756 -1.11154472 0.26218639 -0.81848208 -0.36057171
[115] -0.83679849 -0.26898963 -1.01996264 -1.25807603 -1.55113867 -0.56205227
[121] -1.45955660 -1.18481038 -0.72690000 -0.50710303 -1.64272075 -0.65363435
[127] -0.98332981 -0.48878661 -0.94669698 -0.01255983 -1.03827906 -0.19572398
[133] -1.34965811 -1.22144320 -1.11154472 -0.56205227 -1.56945509 -0.72690000
[139] -1.31302528 -0.81848208 -0.72690000 -0.65363435 -2.21052960 -0.63531793
[145] -1.25807603 -0.94669698 -0.91006415 -1.38629094 -1.49618943 -1.16649396
[151] -1.49618943 -0.48878661 0.35376847 1.06810865 0.82999525 1.06810865
[157] 0.62851469 0.42703413 0.22555357 0.46366696 -0.15909115 0.48198337
[163] -0.59868510 0.88494450 0.24386998 0.77504601 0.29881922 0.93989374
[169] -0.39720454 0.92157733 0.37208488 0.82999525 1.10474148 0.17060432
[175] 0.42703413 0.39040130 -0.23235681 0.35376847 0.06070583 0.66514752
[181] 0.73841318 1.06810865 0.57356545 -0.25067322 0.17060432 2.82648447
[187] 0.90326091 0.77504601 -0.28730605 0.04238942 -0.03087624 0.82999525
[193] -0.26898963 0.99484299 0.20723715 0.99484299 1.15969072 -0.10414190
[199] 0.24386998 1.15969072 0.13397149 0.18892074 0.44535054 0.79336242
[205] 0.17060432 1.08642506 0.42703413 0.15228791 -0.06750907 0.24386998
[211] -0.17740756 1.14137431 0.20723715 0.37208488 0.28050281 1.85571448
[217] 0.29881922 1.03147582 0.37208488 0.97652657 -0.12245832 1.19632355
[223] 0.64683111 0.40871771 0.73841318 0.42703413 0.40871771 0.81167884
[229] 0.61019828 1.26958921 0.18892074 0.18892074 0.90326091 1.52601902
[235] 0.59188186 1.06810865 0.13397149 1.21463997 -0.14077473 1.30622204
[241] 0.61019828 1.45275336 0.61019828 1.47106977 0.24386998 0.97652657
[247] 0.06070583 1.21463997 0.95821016 0.50029979 0.77504601 1.26958921
[253] 0.79336242 2.14877712 0.55524903 0.90326091 0.57356545 0.48198337
[259] -0.45215378 1.69086675 -0.15909115 0.72009677 1.15969072 1.03147582
[265] -0.12245832 1.34285487 0.37208488 2.00224580 0.06070583 0.84831167
[271] 0.55524903 NA 0.48198337 1.14137431 0.18892074 1.04979223
[277] 0.42703413 1.06810865 1.30622204 0.22555357 1.56265185 0.18892074
[283] 0.35376847 1.30622204 0.33545205 1.30622204 0.44535054 1.37948770
[289] 0.51861620 1.43443694 0.31713564 1.15969072 1.12305789 2.53342183
[295] 0.40871771 0.92157733 -0.32393888 0.79336242 -0.17740756 1.17800714
[301] 0.46366696 1.43443694 1.15969072 0.97652657 0.40871771 1.58096826
[307] -0.59868510 1.83739807 -0.30562246 1.25127279 1.01315940 0.61019828
[313] 0.62851469 1.43443694 0.50029979 1.70918316 0.88494450 0.37208488
[319] 1.23295638 0.24386998 1.23295638 1.21463997 1.08642506 0.88494450
[325] 1.34285487 1.03147582 0.72009677 1.32453845 0.28050281 1.19632355
[331] -0.30562246 1.47106977 0.18892074 0.93989374 1.10474148 0.26218639
[337] 1.41612053 0.48198337 0.28050281 2.13046071 -0.12245832 0.99484299
[343] 1.21463997 1.10474148
to_z(penguins$bill_length_mm)
Error in to_z(penguins$bill_length_mm): argument "middle" is missing, with no default
Give defaults whenever possible:
to_z(penguins$bill_length_mm)
[1] -0.88320467 -0.80993901 -0.66340769 NA -1.32279862 -0.84657184
[7] -0.91983750 -0.86488825 -1.79902541 -0.35202864 -1.12131806 -1.12131806
[13] -0.51687637 -0.97478674 -1.70744334 -1.34111504 -0.95647033 -0.26044656
[19] -1.74407616 0.38062795 -1.12131806 -1.13963448 -1.46932994 -1.04805240
[25] -0.93815391 -1.57922843 -0.60845845 -0.62677486 -1.10300165 -0.62677486
[31] -0.80993901 -1.23121655 -0.80993901 -0.55350920 -1.37774787 -0.86488825
[37] -0.93815391 -0.31539581 -1.15795089 -0.75498976 -1.35943145 -0.57182562
[43] -1.45101353 0.03261607 -1.26784938 -0.79162259 -0.51687637 -1.17626731
[49] -1.45101353 -0.29707939 -0.79162259 -0.70004052 -1.63417768 -0.35202864
[55] -1.72575975 -0.46192713 -0.90152108 -0.60845845 -1.35943145 -1.15795089
[61] -1.50596277 -0.48024354 -1.15795089 -0.51687637 -1.37774787 -0.42529430
[67] -1.54259560 -0.51687637 -1.46932994 -0.38866147 -1.90892390 -0.77330618
[73] -0.79162259 0.34399512 -1.54259560 -0.20549732 -0.55350920 -1.23121655
[79] -1.41438070 -0.33371222 -1.70744334 -0.18718091 -1.32279862 -1.61586126
[85] -1.21290014 -0.48024354 -1.39606428 -1.28616579 -1.02973599 -0.91983750
[91] -1.50596277 -0.51687637 -1.81734182 -0.79162259 -1.41438070 -0.57182562
[97] -1.06636882 -0.66340769 -1.98218956 -0.13223166 -1.63417768 -0.53519279
[103] -1.13963448 -1.12131806 -1.10300165 -0.77330618 -0.97478674 -1.04805240
[109] -1.06636882 -0.13223166 -1.06636882 0.30736229 -0.77330618 -0.31539581
[115] -0.79162259 -0.22381374 -0.97478674 -1.21290014 -1.50596277 -0.51687637
[121] -1.41438070 -1.13963448 -0.68172411 -0.46192713 -1.59754485 -0.60845845
[127] -0.93815391 -0.44361071 -0.90152108 0.03261607 -0.99310316 -0.15054808
[133] -1.30448221 -1.17626731 -1.06636882 -0.51687637 -1.52427919 -0.68172411
[139] -1.26784938 -0.77330618 -0.68172411 -0.60845845 -2.16535371 -0.59014203
[145] -1.21290014 -0.90152108 -0.86488825 -1.34111504 -1.45101353 -1.12131806
[151] -1.45101353 -0.44361071 0.39894437 1.11328455 0.87517115 1.11328455
[157] 0.67369059 0.47221003 0.27072946 0.50884286 -0.11391525 0.52715927
[163] -0.55350920 0.93012040 0.28904588 0.82022191 0.34399512 0.98506964
[169] -0.35202864 0.96675323 0.41726078 0.87517115 1.14991738 0.21578022
[175] 0.47221003 0.43557720 -0.18718091 0.39894437 0.10588173 0.71032342
[181] 0.78358908 1.11328455 0.61874135 -0.20549732 0.21578022 2.87166037
[187] 0.94843681 0.82022191 -0.24213015 0.08756532 0.01429966 0.87517115
[193] -0.22381374 1.04001889 0.25241305 1.04001889 1.20486662 -0.05896600
[199] 0.28904588 1.20486662 0.17914739 0.23409663 0.49052644 0.83853832
[205] 0.21578022 1.13160096 0.47221003 0.19746381 -0.02233317 0.28904588
[211] -0.13223166 1.18655021 0.25241305 0.41726078 0.32567871 1.90089038
[217] 0.34399512 1.07665172 0.41726078 1.02170247 -0.07728242 1.24149945
[223] 0.69200701 0.45389361 0.78358908 0.47221003 0.45389361 0.85685474
[229] 0.65537418 1.31476511 0.23409663 0.23409663 0.94843681 1.57119492
[235] 0.63705776 1.11328455 0.17914739 1.25981586 -0.09559883 1.35139794
[241] 0.65537418 1.49792926 0.65537418 1.51624567 0.28904588 1.02170247
[247] 0.10588173 1.25981586 1.00338606 0.54547569 0.82022191 1.31476511
[253] 0.83853832 2.19395302 0.60042493 0.94843681 0.61874135 0.52715927
[259] -0.40697788 1.73604265 -0.11391525 0.76527266 1.20486662 1.07665172
[265] -0.07728242 1.38803077 0.41726078 2.04742170 0.10588173 0.89348757
[271] 0.60042493 NA 0.52715927 1.18655021 0.23409663 1.09496813
[277] 0.47221003 1.11328455 1.35139794 0.27072946 1.60782775 0.23409663
[283] 0.39894437 1.35139794 0.38062795 1.35139794 0.49052644 1.42466360
[289] 0.56379210 1.47961284 0.36231154 1.20486662 1.16823379 2.57859773
[295] 0.45389361 0.96675323 -0.27876298 0.83853832 -0.13223166 1.22318303
[301] 0.50884286 1.47961284 1.20486662 1.02170247 0.45389361 1.62614416
[307] -0.55350920 1.88257397 -0.26044656 1.29644869 1.05833530 0.65537418
[313] 0.67369059 1.47961284 0.54547569 1.75435906 0.93012040 0.41726078
[319] 1.27813228 0.28904588 1.27813228 1.25981586 1.13160096 0.93012040
[325] 1.38803077 1.07665172 0.76527266 1.36971435 0.32567871 1.24149945
[331] -0.26044656 1.51624567 0.23409663 0.98506964 1.14991738 0.30736229
[337] 1.46129643 0.52715927 0.32567871 2.17563660 -0.07728242 1.04001889
[343] 1.25981586 1.14991738
๐ฌ Write a function that performs the Box-Cox power transformation using the value of (non-zero) lambda (\(\lambda\)) supplied.
\[bc = \frac{x^{\lambda} - 1}{\lambda} \text{ for }\lambda \ne 0\]
\[ bc = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{for }\lambda \ne 0\\ log(x) & \text{for }\lambda = 0 \end{cases} \]
to_box_cox <- function(x, lambda = 1) {
(x^lambda - 1) / lambda
}
to_box_cox(vals, 0.3) |>
hist()
Check \(\lambda \ne 0\)
Check and amend for:
\[ bc = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{for }\lambda \ne 0\\ log(x) & \text{for }\lambda = 0 \end{cases} \]
We will cover two types of function
vector functions: one of more vectors as input, one vector as output
ii. โก๏ธ summary functions: input is vector, output is a single value
data frame functions: df as input and df as output
summarise()
Write a function to compute the standard error of a sample.
\[s.e. = \frac{s.d.}{\sqrt{n}}\]
Note: sum(TRUE)
= 1 and sum(FALSE)
= 0 Thus,sum(!is.na(x))
gives you the number of TRUE
(i.e., the number of non-NA values) and is a bit shorter than length(x[!is.na(x)])
๐ฌ Call the function on penguins$bill_length_mm
sd_error(penguins$bill_length_mm)
[1] 0.2952205
Or in a pipeline
penguins |>
summarise(se = sd_error(bill_length_mm))
# A tibble: 1 ร 1
se
<dbl>
1 0.295
๐ฌ Write a function to compute the sums of squares (sum of the squared deviations from the mean)
\[SS(x) = \sum{(x - \bar{x})^2}\]
or
\[SS(x) = s^2 * (n-1)\]
๐ฌ Try it out
sum_sq(penguins$bill_length_mm)
[1] 10164.21
We will cover two types of function
vector functions: one of more vectors as input, one vector as output
โ๏ธ output same length as input.
โ๏ธ summary functions: input is vector, output is a single value
2. โก๏ธ data frame functions: df as input and df as output
Dataframe as input and Dataframe as output
For example, we might summarise one of our columns like this:
penguins |>
summarise(mean = mean(bill_length_mm, na.rm = TRUE),
n = sum(!is.na(bill_length_mm)),
sd = sd(bill_length_mm, na.rm = TRUE),
se = sd_error(bill_length_mm))
# A tibble: 1 ร 4
mean n sd se
<dbl> <int> <dbl> <dbl>
1 43.9 342 5.46 0.295
Output is a dataframe
and summarise several dataframes in the same way
Good candidate for a function to avoid repetitive code: my_summary()
my_summary()
functionmy_summary(penguins, bill_length_mm)
Error in `summarise()`:
โน In argument: `mean = mean(column, na.rm = TRUE)`.
Caused by error:
! object 'bill_length_mm' not found
๐
tidyverse
functions like dplyr::summarise()
use โtidy evaluationโ so you can refer to the names of variables inside dataframes. For example, you can use:
either
Or
rather than $
notation
This is known as data-masking: the dataframe environment masks the user environment by giving priority to the dataframe.
and makes life easier when working interactively
But not so useful in functions
Because of data-masking, summarise()
in my_summary()
is looking for a column literally called column
in the dataframe that has been passed in. It is not looking in the variable column
for the name of column you want to give it.
my_summary()
functionThe solution is to use embracing: {{ var }}
column
variable.groups = "drop"
to avoid message and leave the data in an ungrouped statemy_summary(penguins, bill_length_mm)
# A tibble: 1 ร 4
mean n sd se
<dbl> <int> <dbl> <dbl>
1 43.9 342 5.46 0.295
๐
When tidy evaluation is used
๐ฌ Write a function to calculate the median, maximum and minimum values of a variable grouped by another variable.
๐ฌ Try it out
my_summary(penguins, bill_length_mm, species)
# A tibble: 3 ร 4
species median minimum maximum
<fct> <dbl> <dbl> <dbl>
1 Adelie 38.8 32.1 46
2 Chinstrap 49.6 40.9 58
3 Gentoo 47.3 40.9 59.6
Improvement: Have a default of NULL
for the grouping variable
๐ฌ Try it out
my_summary(penguins, bill_length_mm)
# A tibble: 1 ร 3
median minimum maximum
<dbl> <dbl> <dbl>
1 44.4 32.1 59.6
๐ฌ Try it out with more than one group
my_summary(penguins, bill_length_mm, c(species, island),)
Error in my_summary(penguins, bill_length_mm, c(species, island), ): unused argument (alist())
๐
Use pick()
which allows you to select a subset of columns inside a data masking function:
๐ฌ Try it out with more than one group
my_summary(penguins, bill_length_mm, c(species, island))
# A tibble: 5 ร 5
species island median minimum maximum
<fct> <fct> <dbl> <dbl> <dbl>
1 Adelie Biscoe 38.7 34.5 45.6
2 Adelie Dream 38.6 32.1 44.1
3 Adelie Torgersen 38.9 33.5 46
4 Chinstrap Dream 49.6 40.9 58
5 Gentoo Biscoe 47.3 40.9 59.6
Short cuts:
Writing functions can make you more efficient and make your code more readable. This can be just for your benefit.
Vector functions take one of more vectors as input; output can be a vector (useful in mutate()
and filter()
) or a single value (useful in summarise()
)
Dataframe functions take a dataframe as input and output a dataframe
Give arguments a default where possible
We use {{ var }}
embracing to manage data masking
We use pick()
to select more than one variable